2676

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.045	$\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.054	Extinction correction:
S = 2.566	isotropic (Zachariasen,
1712 reflections	1963)
194 parameters	Extinction coefficient:
H atoms refined isotropically	$0.232(2) \times 10^{-4}$
$w = 4F_{\rho}^{2}/[\sigma^{2}(F_{\rho}^{2})]$	Atomic scattering factors
$+ 0.0004F_{o}^{4}$]	from International Tables
$(\Delta/\sigma)_{\rm max} = 0.021$	for X-ray Crystallography
,	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

$U_{\rm iso}$	for H	atoms;	Ueq	=	(1)	/3)2	$\Sigma_i \Sigma$	$\sum_{j}U_{ij}$	ja*	a_j^*	$\mathbf{a}_i . \mathbf{a}_j$	for	all	othe	rs
---------------	-------	--------	-----	---	-----	------	-------------------	------------------	-----	---------	-------------------------------	-----	-----	------	----

	x	у	Ζ	$U_{\rm eq}/U_{\rm iso}$
01	0.55026 (9)	0.6516(2)	0.64473 (7)	0.0624 (3)
C1	0.5015(1)	0.4492 (3)	0.65840 (9)	0.0428 (4)
C2	0.5938(1)	0.2828 (3)	0.68246 (9)	0.0501 (4)
C3	0.6678 (1)	0.1537 (4)	0.7050(1)	0.0717 (6)
C4	0.4016(1)	0.3851 (3)	0.57852 (8)	0.0443 (4)
C5	0.3183 (1)	0.5401 (3)	0.5415 (1)	0.0674 (6)
C6	0.2248 (2)	0.4888 (4)	0.4706 (1)	0.0858 (7)
C7	0.2133 (2)	0.2834 (4)	0.4365 (1)	0.0798 (6)
C8	0.2951 (2)	0.1297 (3)	0.4724 (1)	0.0695 (5)
C9	0.3902(1)	0.1803 (3)	0.54372 (9)	0.0547 (5)
C10	0.4565 (1)	0.4806 (3)	0.73422 (8)	0.0471 (4)
C11	0.4766 (1)	0.6685 (3)	0.7816(1)	0.0715 (6)
C12	0.4373 (2)	0.6863 (4)	0.8516(1)	0.0987 (7)
C13	0.3783 (2)	0.5217 (5)	0.8736(1)	0.1005 (8)
C14	0.3572 (2)	0.3347 (5)	0.8266 (1)	0.0903 (7)
C15	0.3965(1)	0.3132 (3)	0.7571(1)	0.0662 (5)
HIOH	0.582 (2)	0.641 (3)	0.608 (1)	0.121 (8)
H3	0.722 (2)	0.039 (4)	0.722 (1)	0.126 (8)

Table 2. Selected geometric parameters (Å, °)

01—C1	1.430 (2)	C1C4	1.530 (2)
OI—HIOH	0.83 (2)	C1C10	1.530 (2)
C1—C2	1.476 (2)	C2—C3	1.169 (2)
С1—01—НІОН	111 (1)	C2-C1-C10	107.9 (1)
01—C1—C2	109.5 (1)	C4C1C10	110.2 (1)
01-C1-C4	110.1 (1)	C1—C2—C3	177.2 (2)
OI-CI-C10	107.0(1)	С2—С3—Н3	174 (1)
C2-C1-C4	112.1 (1)		

The 12 phenyl C—C distances have a mean value of 1.377 Å; individual e.s.d.'s are 0.002–0.004 Å, and the e.s.d. of their distribution is 0.010 Å. Isotropic displacement parameters for the H atoms are in the range 5.9 (4)–11.2 (7) Å², and C—H distances are 0.90 (2)–1.04 (2) Å.

Data collection: CAD-4 (Enraf-Nonius, 1977). Cell refinement: CAD-4. Data reduction: PROCESS in MolEN (Fair, 1990). Program(s) used to solve structure: MULTAN (Main et al., 1980) (direct methods). Program(s) used to refine structure: LSFM in MolEN (Fair, 1990). Molecular graphics: OR-TEPII (Johnson, 1976). Software used to prepare material for publication: CIF in MolEN (Fair, 1990).

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1146). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Austin, W. B., Bilow, N., Kelleghan, W. J. & Lau, K. S. Y. (1981). J. Org. Chem. 46, 2280–2286.
- Brock, C. P. & Duncan, L. L. (1994). Chem. Mater. 6, 1307-1312.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Johnson, L., Nassimbeni, L. R. & Toda, F. (1992). Acta Cryst. B48, 827-832.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Moore, J. A., Fronczek, F. R. & Gandour, R. D. (1988). Acta Cryst. C44, 2027-2028.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Toda, F., Tanaka, K. & Mak, T. C. W. (1985). Bull. Chem. Soc. Jpn, 58, 2221–2227.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.
- Zimmerman, H. E. & Zuraw, M. J. (1989). J. Am. Chem. Soc. 111, 7974–7989.

Acta Cryst. (1995). C51, 2676-2680

Absolute Configuration of Mutilin, 5-Acetylmutilin and 5-Bromoacetylmutilin

TULLIO PILATI

CNR - Centro per lo Studio delle Relazioni fra Struttura e Reattività Chimica, Via Golgi 19, 20133 Milan, Italy

GIANCARLO CRAVOTTO AND GIOVANNI PALMISANO

Dipartimento di Scienza e Tecnologia del Farmaco. Università di Torino. Via P. Giuria 9, 10125 Turin. Italy

(Received 18 May 1995; accepted 26 June 1995)

Abstract

The structures of the tricyclic diterpenoids mutilin, $C_{20}H_{32}O_3$, (1), 5-acetylmutilin, $C_{22}H_{34}O_4$, (2), and 5-bromoacetylmutilin, $C_{22}H_{33}BrO_4$, (3), are reported (mu-

tilin is 6-ethenyldecahydro-5,8-dihydroxy-4,6,9,10-tetramethyl-1-oxo-3a,9-propano-3aH-cyclopentacyclooctene). All these compounds present similar conformations, confirming the rigidity of their common tricyclic skeleton. The absolute configuration of these natural products is confirmed by the X-ray diffraction analysis of the bromo derivative (3).

Comment

Mutilin (1), isolated from several species of basidiomycetes (Kavanagh, Hervey & Robbins, 1951, 1952), is representative of the now well known family of important diterpenoid metabolites. Of the structurally related derivatives of (1) isolated to date, many exhibit significant in vitro antibiotic activity against grampositive bacteria, and low animal toxicity (Hogenauer, 1979; Berner, Vypel & Schulz, 1987, and references cited therein). The chemical structure of (1), established by Arigoni (1968) and by Birch, Holzapfel & Rickards (1966), contains a rigid tricyclic carbon network with eight stereocentres, seven of which are consecutively installed around the eight-membered ring. The only crystallographic study reported for a congener of mutilin (Dobler & Dürr, 1975) is on the 5-bromoacetyl derivative (3). The data reported for this structure are of quite poor quality, giving very unusual distances and a high R factor, so we decided to collect new data for (3); the stereostructure assigned to (3) on the basis of ORD spectral comparison with model compounds, has been unequivocally confirmed by our investigation. In fact, in spite of the use of Mo $K\alpha$ radiation, which is not the most appropriate for the determination of the absolute configuation, the Flack (1983) parameter of 0.017 (11) indicates that our data are reliable.

Fig. 1. ORTEPII (Johnson, 1976) plots of (a) mutilin, (b) 5-acetylmutilin and (c) 5-bromoacetylmutilin. Displacement ellipsoids are plotted at the 20% probability level.

(c)

01

02

03

Cl C2

C3

C3a C4

C5 C6 **C**7 C8

C9a C9

C10 C11

C12

C13

C14

C15

C16 C17

C18

the greatest differences in chemically equivalent bonds are found for the terminal ethylene group C15=C16, affected by high thermal motion, and for the O2-C5 bond, in a different chemical environment in (1) with respect to (2) and (3). The differences in bond angles and torsion angles are in some cases, but not surprisingly, more pronounced. In particular, the widest torsion angle along the tricyclic skeleton is C(4)—C(5)—C(6)—C(7), with values ranging from -67.5(3) to $-63.3(3)^{\circ}$. These difference are partially due to the different packing of the three compounds. Packing in (1) is characterized by a hydrogen bond between the hydroxy group O2-HO2 and $O3^i$, with $O2 \cdot O3^i 2.798 (4)$ Å and $O2-HO2 \cdot O3^i$ $171 (3)^{\circ}$, and a weaker one between the hydroxy group O3—HO3 and O1ⁱⁱ, with O3···O1ⁱⁱ 2.872 (4) Å and O3--HO3···O4ⁱⁱ 167 (3)° [symmetry codes: (i) $\frac{1}{2} - x$, -y, $-\frac{1}{2} + z$; (ii) 1 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$]. Packing of (2) and of (3) is looser, showing only a weak hydrogen bond between the hydroxy group and an acetyl O atom: in (2) the distance $O3 \cdots O4^{iii}$ is 3.024(2) Å and the angle O3-HO3···O4ⁱⁱⁱ is $154(3)^\circ$, while in (3), $O3 \cdots O4^{iv}$ is 2.950 Å and O3—HO3···O4^{iv} is 162 (3)° [symmetry codes: (iii) -x, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (iv) 1 + x, y, z].

Experimental

(1) and (2) were produced by basidiomycetes Pleurotus mutilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat, purified by silica gel chromatography and crystallized from chloroform. (3) was synthesized by esterification of (1) with bromoacetic acid in dichloromethane at room temperature in the presence of dicyclohexylcarbodiimmine, and crystallyzed from *n*-hexane-diisopropyl ether.

Compound (1)

Crystal data

Mo $K\alpha$ radiation C₂₀H₃₂O₃ $\lambda = 0.71073 \text{ Å}$ $M_r = 320.46$ Orthorhombic Cell parameters from 45 reflections $P2_{1}2_{1}2_{1}$ a = 9.816(1) Å $\theta = 5.56 - 14.44^{\circ}$ $\mu = 0.075 \text{ mm}^{-1}$ b = 12.422(1) Å T = 293(2) K c = 15.234(1) Å V = 1857.5 (3) Å³ Prism $0.36 \times 0.30 \times 0.24$ mm Z = 4 $D_x = 1.146 \text{ Mg m}^{-3}$ Colourless Data collection Siemens P4 diffractometer $\theta_{\rm max} = 24.99^{\circ}$ $h = 0 \rightarrow 11$ $\theta/2\theta$ scans $k = 0 \rightarrow 14$ Absorption correction: $l = -18 \rightarrow 18$ none

monitored every 50

intensity decay: 2.59%

reflections

3618 measured reflections 3 standard reflections 3263 independent reflections 2430 observed reflections $[I > 2\sigma(I)]$ $R_{\rm int} = 0.0195$

Refinement

Refinement on F^2	$\Delta \rho_{\text{max}} = 0.131 \text{ e } \text{\AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.0463$	$\Delta \rho_{\rm min} = -0.124 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1166$	Extinction correction:
S = 1.032	SHELXL93 (Sheldrick,
3263 reflections	1993)
323 parameters	Extinction coefficient:
All H-atom parameters	0.023 (2)
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0553P)^2]$	from International Tables
+ 0.0662P]	for Crystallography (1992,
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = 0.020$	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (1)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

		,	
x	у	Z	U_{eq}
0.6151 (3)	-0.2474 (2)	0.10621 (15)	0.0894 (8)
0.1160(3)	0.0789 (2)	-0.01141 (15)	0.0879 (9)
0.3843 (2)	0.0350(2)	0.33007 (11)	0.0604 (6)
0.5535 (3)	-0.1773 (2)	0.0686(2)	0.0576 (8)
0.5508 (5)	-0.1688(3)	-0.0299 (2)	0.0831 (12)
0.4735 (4)	-0.0660 (3)	-0.0497 (2)	0.0633 (8)
0.4752 (2)	0.0005 (2)	0.03633 (15)	0.0425 (6)
0.3569 (3)	0.0846 (2)	0.0369(2)	0.0468 (6)
0.2150 (3)	0.0326 (3)	0.0468 (2)	0.0556 (7)
0.1504 (3)	0.0439 (2)	0.1399 (2)	0.0528 (7)
0.2311 (3)	-0.0130 (2)	0.2128 (2)	0.0502 (7)
0.3760 (3)	0.0238 (2)	0.23558 (14)	0.0426 (6)
0.4660 (3)	-0.0881 (2)	0.1083 (2)	0.0411 (6)
0.4923 (3)	-0.0536 (2)	0.20497 (15)	0.0438 (6)
0.6345 (3)	0.0008 (2)	0.2070 (2)	0.0554 (7)
0.6442 (3)	0.0916 (3)	0.1392 (2)	0.0567 (7)
0.6149 (3)	0.0543 (3)	0.0466 (2)	0.0565 (7)
0.3629 (5)	0.1584 (3)	-0.0446 (2)	0.0833 (11)
0.0090 (4)	-0.0097 (4)	0.1383 (3)	0.0905 (12)
0.1322 (4)	0.1632 (3)	0.1599 (2)	0.0677 (9)
0.1280 (5)	0.2121 (3)	0.2323 (2)	0.0847 (11)
0.4889 (5)	-0.1546 (3)	0.2637 (2)	0.0693 (9)
0.6829 (4)	0.0402 (4)	0.2969 (2)	0.0851 (12)

Compound (2)

Crystal data

C22H34O4 $M_r = 362.49$ Orthorhombic $P2_{1}2_{1}2_{1}$ a = 7.063 (1) Åb = 15.863 (2) Å c = 18.027 (3) Å V = 2019.8 (5) Å³ Z = 4 $D_r = 1.192 \text{ Mg m}^{-3}$

Data collection

Siemens P4 diffractometer $\theta/2\theta$ scans Absorption correction: none 3976 measured reflections 3544 independent reflections 2694 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0232$

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 5.2 - 14.65^{\circ}$ $\mu = 0.080 \text{ mm}^{-1}$ T = 293 (2) K Prism $0.34 \times 0.34 \times 0.16$ mm Colourless

 $\theta_{\rm max} = 25.00^{\circ}$ $h = 0 \rightarrow 8$ $k = 0 \rightarrow 18$ $l = -21 \rightarrow 21$ 3 standard reflections monitored every 197 reflections intensity decay: 5.73%

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.131 \text{ e } \text{\AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.0448$	$\Delta \rho_{\rm min} = -0.124 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.0994$	Extinction correction:
S = 1.067	SHELXL93 (Sheldrick,
3544 reflections	1993)
346 parameters	Extinction coefficient:
H atoms bonded to C20	0.0065 (7)
calculated, all others	Atomic scattering factors
refined isotropically	from International Tables
$w = 1/[\sigma^2(F_o^2) + (0.0323P)^2]$	for Crystallography (1992,
+ 0.1808P]	Vol. C, Tables 4.2.6.8 and
where $P = (F_o^2 + 2F_c^2)/3$	6.1.1.4)
$(\Delta/\sigma)_{\rm max} = -0.002$	

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	х	у	Z	U_{eq}
01	0.1416 (5)	0.09879 (14)	0.46734 (12)	0.0886 (9)
O2	0.0078 (3)	0.08047 (10)	0.10276 (9)	0.0396 (4)
O3	0.3968 (3)	0.33879(11)	0.27704 (11)	0.0483 (5)
O4	-0.1835 (3)	-0.01154 (13)	0.16127 (11)	0.0557 (6)
Cl	0.1477 (4)	0.0745 (2)	0.4041 (2)	0.0469 (7)
C2	0.1054 (7)	-0.0158(2)	0.3826 (2)	0.0602 (9)
C3	0.1453 (5)	-0.0215 (2)	0.3003 (2)	0.0462 (7)
C3a	0.2712 (4)	0.05548 (14)	0.28135 (14)	0.0341 (6)
C4	0.2633 (4)	0.0753 (2)	0.19657 (14)	0.0342 (6)
C5	0.0745 (4)	0.11699 (15)	0.17300 (13)	0.0327 (6)
C6	0.0826 (4)	0.21334 (15)	0.15716(14)	0.0364 (6)
C7	0.1218 (4)	0.26447 (15)	0.22870 (14)	0.0363 (6)
C8	0.3153 (4)	0.25596 (15)	0.26777 (14)	0.0346 (6)
C9a	0.1938 (4)	0.1251 (2)	0.33413 (14)	0.0334 (6)
C9	0.3113 (4)	0.20759 (15)	0.34293 (13)	0.0335 (6)
C10	0.5134 (4)	0.1807(2)	0.3681 (2)	0.0403 (7)
C11	0.5971 (4)	0.1146 (2)	0.3159 (2)	0.0456 (7)
C12	0.4758 (4)	0.0369 (2)	0.3066 (2)	0.0451 (7)
C13	0.3098 (5)	-0.0034 (2)	0.1498 (2)	0.0519 (8)
C14	-0.1150 (5)	0.2411 (2)	0.1298 (2)	0.0502 (7)
C15	0.2257 (5)	0.2311 (2)	0.0969 (2)	0.0483 (7)
C16	0.3493 (6)	0.2928 (2)	0.0936 (2)	0.0663 (10)
C17	0.2208 (5)	0.2647 (2)	0.4019 (2)	0.0438 (7)
C18	0.6556(5)	0.2522 (2)	0.3797 (2)	0.0569 (8)
C19	-0.1207 (4)	0.0187 (2)	0.1051 (2)	0.0431 (7)
C20	-0.1727 (6)	-0.0094 (2)	0.0281 (2)	0.0744 (11)

Compound (3)	
Crystal data	
$C_{22}H_{33}BrO_4$ $M_r = 441.39$ Monoclinic $P2_1$ a = 9.320 (1) Å b = 11.251 (1) Å c = 10.671 (1) Å $\beta = 109.266 (8)^{\circ}$ $V = 1056.3 (2) Å^{3}$ Z = 2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 37 reflections $\theta = 3.62-17.15^{\circ}$ $\mu = 1.970$ mm ⁻¹ T = 293 (2) K Prism $0.45 \times 0.28 \times 0.25$ mm Colourless
$D_x = 1.388$ Mg m Data collection Siemens P4 diffractometer $\theta/2\theta$ scans	$R_{\text{int}} = 0.0267$ $\theta_{\text{max}} = 25.00^{\circ}$

Absorption correction:
$$h = 0 \rightarrow 11$$
 ψ scan (SHELXL/PC; $k = -13 \rightarrow 13$ Sheldrick, 1990) $l = -12 \rightarrow 11$ $T_{min} = 0.397$, $T_{max} =$ 3 standard refle0.458monitored e3909 measured reflectionsreflections3677 independent reflectionsintensity dec

Refinement

Br 01 02 O3 04 C1 C2 C3 C3a C4 C5

C6 **C**7 C8

C9

C9a C10 CII C12 C13 C14 C15 C16 C17 C18

C19 C20

 $[I > 2\sigma(I)]$

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.002$
$R[F^2 > 2\sigma(F^2)] = 0.0444$	$\Delta \rho_{\rm max} = 0.241 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.0912$	$\Delta \rho_{\rm min} = -0.239 \ {\rm e} \ {\rm \AA}^{-3}$
3677 reflections	Extinction correction: none
299 parameters	Atomic scattering factors
H atoms of methyl and ethyl	from International Tables
groups calculated, all	for Crystallography (1992,
others refined isotropically	Vol. C, Tables 4.2.6.8 and
with X—H distance	6.1.1.4)
restraints	Absolute configuration:
$w = 1/[\sigma^2(F_o^2) + (0.0310P)^2]$	Flack (1983) parameter
+ 0.1348 <i>P</i>]	= 0.017 (11)
where $P = (F_o^2 + 2F_c^2)/3$	

 $= 0 \rightarrow 11$

 $= -13 \rightarrow 13$

standard reflections monitored every 197

reflections intensity decay: 5.50%

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (3)

$U_{\rm eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

r	v	7	1/
0.07855 (8)	0 22061 (6)	1 24072 (5)	0.0808(2)
0.0777(4)	-0.0897(3)	0.4198(3)	0.0529 (10)
0.1302 (4)	0.0546 (3)	1.0422 (3)	0.0430 (8)
0.5959 (4)	-0.1214(4)	0.8338 (4)	0.0714 (12)
-0.1130(4)	0.0074 (3)	0.9374 (4)	0.0611 (10)
0.0686 (5)	-0.0411(4)	0.5151 (5)	0.0361 (12)
-0.0693(6)	0.0313 (6)	0.5167 (6)	0.053(2)
-0.0246(5)	0.0978 (5)	0.6462 (5)	0.0382 (12)
0.1509 (5)	0.0923 (4)	0.7011 (4)	0.0304 (10)
0.2085 (5)	0.1167 (4)	0.8543 (4)	0.0329 (11)
0.1832 (5)	0.0118 (4)	0.9359 (4)	0.0342 (11)
0.3237 (5)	-0.0669(4)	1.0085 (4)	0.0435 (12)
0.3823 (6)	-0.1336(5)	0.9106 (5)	0.0472 (13)
0.4536 (6)	-0.0660 (5)	0.8200 (6)	0.0471 (14)
0.3529 (5)	-0.0624 (4)	0.6692 (4)	0.0381 (11)
0.1865 (5)	-0.0309(4)	0.6553 (4)	0.0311 (10)
0.4067 (6)	0.0353 (5)	0.5941 (5)	0.0494 (13)
0.3809 (7)	0.1610 (5)	0.6373 (5)	0.0510(13)
0.2167 (6)	0.1834 (4)	0.6270 (4)	0.0389 (13)
0.1394 (5)	0.2328 (5)	0.8846 (4)	0.0512 (13)
0.2706 (7)	-0.1618 (5)	1.0882 (5)	0.067 (2)
0.4430 (7)	0.0110 (6)	1.1064 (5)	0.063 (2)
0.5792 (9)	-0.0020 (8)	1.1555 (9)	0.114 (3)
0.3593 (6)	-0.1857 (5)	0.6096 (5)	0.0598 (15)
0.5696 (7)	0.0229 (6)	0.5886 (7)	0.083 (2)
-0.0142 (7)	0.0456 (4)	1.0316 (5)	0.0434 (12)
-0.0429 (7)	0.0865 (6)	1.1555 (5)	0.062(2)

Table 4. Selected values of bond distances (Å), bond angles (°) and torsion angles (°)

Mutilin	5-Acetylmutilin	5-Bromo- acetylmutilin
1.205 (3)	1.203 (3)	1.182 (5)
1.435 (3)	1.470 (3)	1.460 (5)
1.448 (3)	1.444 (3)	1.428 (6)
1.504 (4)	1.514 (4)	1.527 (7)
1.527 (4)	1.531 (4)	1.541 (6)
1.516 (5)	1.513 (4)	1.504 (7)
1.550 (4)	1.548 (4)	1.545 (6)
	Mutilin 1.205 (3) 1.435 (3) 1.448 (3) 1.504 (4) 1.527 (4) 1.516 (5) 1.550 (4)	Mutilin5-Acetylmutilin1.205 (3)1.203 (3)1.435 (3)1.470 (3)1.448 (3)1.444 (3)1.504 (4)1.514 (4)1.527 (4)1.531 (4)1.516 (5)1.513 (4)1.550 (4)1.548 (4)

С3а—С9а	1.555 (3)	1.557 (3)	1.542 (6)
C3a—C12	1.533 (4)	1.543 (4)	1.540 (6)
C3a—C4	1.563 (3)	1.562 (3)	1.568 (6)
C4C5	1.542 (4)	1.548 (4)	1.531 (6)
C4—C13	1.545 (4)	1.542 (4)	1 537 (7)
C5-C6	1.560 (4)	1.556 (3)	1.559 (6)
C6	1.500 (4)	1.530 (3)	1.535 (0)
C6-C14	1.537 (4)	1.545 (4)	1.520(7)
C6_C15	1.540 (5)	1.544 (4)	1.544 (7)
	1.525 (4)	1.511 (4)	1.520(7)
	1.554 (4)	1.543 (4)	1.543 (8)
C8-C9	1.564 (4)	1.557 (3)	1.573 (8)
	1.556 (3)	1.558 (3)	1.550 (6)
C9_C10	1.552 (4)	1.557 (4)	1.538 (7)
C9_C17	1.541 (4)	1.536 (4)	1.536 (6)
C10-C11	1.532 (4)	1.529 (4)	1.531 (7)
C10-C18	1.529 (4)	1.528 (4)	1.545 (8)
C11—C12	1.513 (4)	1.512 (4)	1.519 (8)
C15—C16	1.260 (4)	1.313 (5)	1.212 (8)
C2-C1-C9a	109.5 (2)	109.1 (2)	106.4 (4)
C1-C2-C3	105.5 (3)	105.7 (2)	107.2 (4)
C2-C3-C3a	105.9 (2)	106.1(2)	105 5 (4)
C3-C3a-C9a	102.7(2)	102.9(2)	103.1 (3)
C4-C3a-C9a	1152(2)	116.3 (2)	116.9 (3)
$C_{9} - C_{3} - C_{12}$	106.8(2)	106.5(2)	105 7 (3)
C_{3}^{3}	100.0(2)	100.5(2)	112 2 (2)
C4_C5_C6	113.1(2)	112.7(2)	117.2 (3)
C_{1}^{-} C_{2}^{-} C_{3}^{-} C_{3	114.7(2)	110.0(2)	117.3 (4)
$C_{2} = C_{2} = C_{2}$	114.0 (2)	111.0 (2)	111.7 (4)
C_{1}	120.3 (2)	119.5 (2)	120.9 (4)
C_{-}	115.2 (2)	115.1 (2)	114.8 (4)
$C_{9a} = C_{9a} = C_{10}$	106.8 (2)	106.8 (2)	105.9 (4)
	109.3 (2)	109.6 (2)	110.1 (4)
CI = C9a = C3a	101.6 (2)	101.9 (2)	102.4 (3)
C3a-C9a-C9	117.6 (2)	118.1 (2)	119.3 (3)
C9-C10-C11	111.3 (2)	111.3 (2)	113.1 (4)
C10-C11-C12	113.1 (2)	114.1 (2)	112.7 (4)
C3a—C12—C11	113.5 (2)	114.0 (2)	114.5 (4)
C3-C3a-C4-C13	-55.6 (3)	-53.0(3)	-52.5(5)
C13-C4-C5-O2	-10.5(3)	-11.1(3)	-127(5)
$C_{3a} - C_{4} - C_{5} - C_{6}$	104.1 (3)	104.5 (2)	102.8 (4)
C4-C5-C6-C7	-633(3)	-67.5(3)	-659(5)
02	55 2 (4)	553(3)	55 5 (5)
C_{5}^{-} C_{6}^{-} C_{7}^{-} C_{8}^{8}	637(3)	55.5 (5) 66.9 (3)	55.5(5)
	107.1(3)	109.8 (3)	00.0 (0)
	-107.1 (3)	-108.8(3)	-108.3(5)
$C_3 - C_3 - C_9 a - C_1$	37.4 (3)	36.9 (3)	38.8 (4)
$C_{4} - C_{3a} - C_{9a} - C_{9}$	-70.9(3)	- /0.9 (3)	-69.8 (5)
C1-C9a-C9C17	-52.6 (3)	-51.9(3)	-52.8 (5)
C3a—C9a—C9—C8	66.4 (3)	65.4 (3)	64.6 (5)
O3-C8-C9-C17	48.7 (3)	50.5 (3)	46.4 (5)
С7—С8—С9—С9а	46.2 (3)	46.5 (3)	45.6 (5)
C17-C9-C10-C18	-60.7 (3)	-61.1 (3)	-58.5 (6)
C9a-C9-C10-C11	53.5 (3)	52.9 (3)	52.2 (5)
C8-C9-C10-C11	-66.4 (3)	-66.9 (3)	-67.5 (5)
C9-C10-C11-C12	-57.1(3)	-55.8 (3)	-54.8 (6)
C10-C11-C12-C3a	56.6 (3)	54.9 (3)	54.2 (6)
C9a-C3a-C12-C11	-51.6(3)	-49.9(3)	-50.6(5)

For all compounds, data collection: *XSCANS* (Fait, 1991); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structures: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structures: *SHELXL*93 (Sheldrick, 1993); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*93.

We thank the Servizio Italiano di Diffusione Dati Cristallografici del CNR (Parma) for the access to the Cambridge Data Files.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435– 436.
- Arigoni, D. (1968). Pure Appl. Chem. 17, 331-348, and references therein.
- Berner, H., Vypel, H. & Schulz, G. (1987). *Tetrahedron*, 43, 765–770, and references therein.
- Birch, A. J., Holzapfel, C. W. & Rickards, R. W. (1966). *Tetrahedron*, 8, 359–387.
- Dobler, M. & Dürr, B. G. (1975). Cryst. Struct. Commun. 4, 259–264.Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hogenauer, G. (1979). Mechanism of Action of Antibacterial Agents, pp. 334–360. Edited by R. E. Kahn. New York: Springer-Verlag.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kavanagh, F., Hervey, A. & Robbins, W. J. (1951). Proc. Natl Acad. Sci. USA, 37, 570–574.
- Kavanagh, F., Hervey, A. & Robbins, W. J. (1952). Proc. Natl Acad. Sci. USA, 38, 555–560.
- Sheldrick, G. M. (1990). SHELXL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 2680-2683

3-Nitrodibenzofuran and 3-Iododibenzofuran

PENNY A. CHALONER, PETER B. HITCHCOCK AND PETER G. SUTTON

School of Chemistry and Molecular Sciences, University of Sussex, Falmer, Brighton, England

(Received 25 October 1993; accepted 18 July 1995)

Abstract

The structures of 3-nitrodibenzofuran, $C_{12}H_7NO_3$, and 3-iododibenzofuran, $C_{12}H_7IO$, have been determined. Both molecules are nearly planar and pack in herringbone patterns composed of symmetry related head-to-tail pairs with parallel π systems.

Comment

The title structures, 3-nitrodibenzofuran, (1), and 3-iododibenzofuran, (2), were determined as part of a study of the relationship between NMR spectroscopic parameters and molecular geometry in diphenyl ethers and dibenzofurans.

Acta Crystallographica Section C ISSN 0108-2701 ©1995

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1195). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.